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Some of the most popular ways to treat quantum critical materials, that is, materials close to a
magnetic instability, are based on the Landau functional. The central quantity of such approaches
is the average magnitude of spin fluctuations, which is very difficult to measure experimentally or
compute directly from the first principles. We calculate the parameters of the Landau functional for
Pd and use these to connect the critical fluctuations beyond the local-density approximation and
the band structure.

The physics and materials science of weak itinerant fer-
romagnetic metals and highly renormalized paramagnets
near magnetic instabilities has attracted renewed theo-
retical interest. This is a result of recent discoveries of
materials with highly non-conventional metallic proper-
ties, especially, non-Fermi liquid scalings, metamagnetic
behavior, and unconventional superconductivity, in sev-
eral cases co-existing with ferromagnetism. Discoveries
in the last three years alone include the co-existing fer-
romagnetism and superconductivity of ZrZn2 [1], UGe2

[2],URhGe2 [3], high pressure ε-Fe [5], and the metamag-
netic quantum critical point in Sr3Ru2O7 [4].

Unfortunately, although model theories have been put
forth, there is still not an established material specific
(first principles) theoretical understanding of these phe-
nomena. One difficulty is the usual starting point for first
principles theories, density functional theory (DFT) as
implemented in the local density approximation (LDA).
This already includes most spin degrees of freedom, in-
cluding dynamical fluctuations, as evidenced by its for-
mally exact description of the uniform electron gas as well
as its well documented success in accurately describing
a wide variety of itinerant magnetic materials. However,
the electron gas, upon which most density functionals
are built, is not near any critical point for densities rel-
evant to the solid state, and furthermore the proximity
to itinerant magnetism of a metal is an extremely non-
local quantity, in particular depending on the electronic
density of states at the Fermi level N(EF ).

The result is that the LDA, while providing a good
description of most itinerant ferromagnets that are not
near critical points, fails to include the soft critical fluc-
tuations in the materials of interest here. Since fluctua-
tions are generically antagonistic to ordering, the result
is that magnetic moments and magnetic energies of weak
itinerant ferromagnets near critical points are overesti-
mated in the LDA (recent examples include Sc3In [6],
Ni3Al [13], NaCo2O4 [8], and ZrZn2 [9]) and the suscepti-
bilities of paramagnets near critical points are underesti-
mated. Furthermore, there is an overlap region where the
LDA predicts ferromagnetism for paramagnetic materi-
als. This interesting class includes FeAl [11,12], Ni3Ga
[13], and Sr3Ru2O7 [7] (as mentioned, this latter material

shows a metamagnetic quantum critical point). The ba-
sic theoretical difficulty in correcting the LDA for these
materials is that there is some unknown and possibly
strongly material dependent cross-over in energy (and
possibly non-trivially in momentum) separating quantum
critical fluctuations, not included in the LDA, from the
dynamical fluctuations that are included in the LDA. It is
worth noting that these fluctuations are responsible not
only for the suppression of the magnetic ordering, but
also for unusual transport properties of quantum critical
materials, deviating from the conventional Fermi liquid
behavior, for mass renormalization, and even for super-
conductivity in some systems. Many of these issues have
been addressed recently in theoretical papers, utilizing
idealized models of various kinds. However, a quantita-
tive link between such models and actual material char-
acteristics is still missing.

We attempt to build a bridge between such theo-
ries and the LDA. We concentrate on the question of
what kind of material-specific understanding, relevant
for quantum criticality, can be extracted from the LDA
calculations. Primarily, we focus here on Pd. This is
perhaps the best studied high susceptibility paramagnet
[14–17], and in fact a number of theories related to spin
fluctuations have been elucidated using this material.
Furthermore, itinerant ferromagnetism appears in Pd at
2.5% Ni doping [18]. We present highly accurate calcu-
lations of the static magnetic susceptibility for Pd and
find that, indeed, the LDA overestimates the tendency
to magnetism. We also estimate the r.m.s. magnitude of
spin fluctuations (paramagnons) in Pd, needed to reduce
the calculated susceptibility to reproduce experiment,
and show that it is compatible with that which might be
estimated from LDA susceptibility via the fluctuation-
dissipation theorem with a reasonable ansatz for the cut-
off momentum.

We have performed electronic structure calculations
using the self consistent full potential linearized aug-
mented plane wave (FLAPW) [19] method within the
density functional theory (DFT) [20]. The local density
approximation (LDA) of Perdew and Wang [21] and the
Generalized Gradient Approximation (GGA) of Perdew,
Burke, and Ernzerhof [22] were used for the correlation
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and exchange potentials. Calculations were performed
using the WIEN2k package [23]. Local orbital extensions
[24] were included in order to accurately treat the upper
core states and to relax any residual linearization errors.
A well converged basis consisting of LAPW basis func-
tions with wave vectors up to Kmax set as RKmax = 9,
with the Pd sphere radii R =2.59 bohr. All total energy
calculations used at least 1470 and up to 2844 k-points
in the irreducible part of the Brillouin zone as needed.
Spin-orbit (SO) interactions were incorporated using a
second variational procedure [25], where all states below
the cutoff energy 1.5 Ry were included, with the so-called
p1/2 extension [19], which accounts for the finite charac-
ter of the wave function at the nucleus for the p1/2 state.

All calculations were performed in an external mag-
netic field, interacting with both spin, s, and orbital, l,
[23] momenta:

VHext = µBHext
.(l + 2s).

The input values of H were chosen from 0 to 10000 T in
irregular increments to map out the change in energy and
magnetic moment as a function of applied field. While
use of the LDA [21] resulted in zero magnetic moment
in a zero magnetic field, consistent with the experiment
[18], use of GGA [22] resulted in a persistent magnetic
moment of 0.2µB , with an extremely small magnetic en-
ergy of less than 1 meV.

In order to understand the change in the total energy
and magnetic moments as a function of the applied ex-
ternal field, special care was taken to ensure that these
quantities were well converged with respect to the k-
mesh. Given that in the low fields we are interested in,
energy changes need to be converged of the order of 0.1
meV/atom. The total energy, E, with respect to that
at M = 0 µB as a function of the magnetization, M , is
shown in Figure 1. Figure 2 shows the applied magnetic
field, H, as a function of M (with the magnetization di-
rection 100). Note that the latter dependence follows
from the former one, as H ≡ ∂E

∂M . One can see though
that of the two quantities H shows less computational
noise, so this was the dependency we used in the analysis
described below.

As can be seen in both plots (more so in Figure 2),
there exist two regimes in terms of the magnetic moment,
M . For values of M ≤ 0.5 µB (corresponding to H ∼
1200 T), the external field and energy increase slowly, but
for M≥ 0.5µB , bothH and E increase rapidly, suggesting
that the long wave spin fluctuations at any temperature
should be smaller that ∼ 0.5 µB in amplitude.

The linear magnetic susceptibility is defined as χ−1 =
∂H
∂M |M=0 = ∂2E

∂M2 . Figure 3 shows, however, that even for
M . 0.5 µB the susceptibility is highly nonlinear. In
fact, ∂M

∂H starts near 11.6 emu/g and decreases rapidly
with the field. In order to compute accurately the rele-
vant derivatives, we have fitted the calculated H(M) for

M < 0.5 µB with a polynomial (Figure 3). Thus com-
puted susceptibility as the function of the applied field is
shown in Fig. 4. We see that the zero field susceptibility
is nearly twice larger than the experimental value of 6.8
emu/g corresponding to 21 st/eV-cell [30,31]. Only in a
field of 550 T does the susceptibilty eventually become
close to the experimental number.

One may understand the origin of this overestimation
of magnetic susceptibility in the following way. Not only
is the calculated susceptibility very large, but also as
mentioned the dependence of the induced magnetic mo-
ment on the applied field is highly nonlinear in such a
manner that the total energy as a function of the con-
strained magnetic moment is very flat up to M ≈ 0.5 µB .
This implies that zero temperature quantum fluctuations
beyond the LDA may have a substantial magnitude. One
of the ways to take into account these fluctuations is via
the Ginzburg-Landau theory, which, in connection with
the spin fluctuations in nearly-magnetic metals has been
used by several authors during the 1970’s. This method
starts with an expression for the total energy without
such fluctuations as a function of the induced magnetic
moment M

Estatic(M) = a0 +
∑
n≥1

1
2n
a2nM

2n, (1)

Hstatic(M) =
∑
n≥1

a2nM
2n−1 (2)

(obviously, a2 gives the inverse spin susceptibility with-
out fluctuations), and then assume Gaussian zero-point
fluctuations of an r.m.s. magnitude ξ for each of the d
components of the magnetic moment (for a 3D isotropic
material like Pd, d = 3). After averaging over the spin
fluctuations, one obtains a fluctuation-corrected func-
tional. The general expression of Ref. [32] can be written
in the following compact form:

H(M) =
∑
n≥1

ã2nM
2n−1

ã2n =
∑
i≥0

Cn−1
n+i−1a2(n+i)ξ

2iΠn+i−1
k=n (1 +

2k
d

). (3)

For instance,

ã2 = a2 +
5
3
a4ξ

2 +
35
9
a6ξ

4 +
35
3
a8ξ

6...

ã4 = a4 +
14
3
a6ξ

2 + 21a8ξ
6...

... (4)

We can now make a connection between the above the-
ory and the band structure. Our calculations, fitted to
Eq. 2 with n = 3, are presented in Fig. 3. Since the
high-power coefficients are positive, obviously, renormal-
ization according to Eq. 3 will lead to a reduction of the
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magnetic susceptibility, χ = 1/ã2 < 1/a2. The magni-
tude of this effect depends on the r.m.s. amplitude, ξ, of
the spin fluctuations, which in turn depends on how fast
χ(q) changes at small q’s.

In order to find the value of ξ necessary to renormalize
the zero-field value of χ, one can use Eq. 2 with the n ≤
3 expansion:

χ−1(0) =
∂M

∂H
= ã2 = a2 +

5
3
a4ξ

2 +
35
9
a6ξ

4. (5)

The fit coefficients are a2 = 478 T/µB , a4 = 8990 T/µ3
B ,

and a6 = 277 T/µ5
B . Setting χ(0) equal to the experi-

mental value [30,31] leads to ξ = 0.15µB . However,it is
highly desirable to find a way of estimating ξ in a real
material using ab initio calculations. This can be done
using the fluctuation-dissipation theorem along the lines
suggested by Moriya [33] and elaborated by many authors
(see, e.g., Refs. [35,34]), which states that for zero-point
fluctuations

ξ2 =
4~
Ω

∫
d3q

∫
dω

2π
1
2

Imχ(q, ω), (6)

where Ω is the Brillouin zone volume. It is customary to
approximate χ(q, ω) near a QCP as

χ−1(q, ω) = χ−1
0 (0, 0)− I + cq2 − iω/Γq, (7)

where χ−1
0 (0, 0) = 1/N(EF ) (density of states per spin)

is the bare (noninteracting) static uniform susceptibility,
and I is the Stoner parameter which is weakly dependent
on q and ω. Obviously, χ−1

0 (q, ω) = χ−1
0 (0, 0) + cq2 −

iω/Γq is the noninteracting susceptibility. Although not
necessary [35], a convenient approximation, good near a
QCP, is that χ−1(0, 0) ≈ 0, that is, I ≈ 1/N(EF ). One
can also use an expansion for χ0(q, ω), equivalent to Eq.
7, namely

χ0(q, ω) = N(EF )− aq2 + ibω/q. (8)

Let us show how the coefficients a and b are related,
in some approximation, to the band structure. We write

Reχ0(q,0) =
∑
k

[f(Ek)− f(Ek+q)] (Ek+q − Ek)−1 (9)

Imχ0(q,ω) =
∑
k

[f(Ek)− f(Ek+q)]δ(Ek+q − Ek − ω), (10)

where f(E) is the Fermi function, −df(E)
dE = δ(E−EF ). Expanding Eq. 9 in ∆ = Ek+q−Ek = vk·q+ 1

2

∑
αβ µ

αβ
k qαqβ+

..., we get to second order in q

Reχ0(q,0) = N(EF ) +
∑
k

[
1
2

(
dδ(εk − EF )

dEF

)
(vk·q+

∑
µαβk qαqβ

2
) +

1
6

(
d2δ(εk − EF )

dE2
F

)
(vk·q)2

]
. (11)

The odd powers of vk cancel out and we get

Reχ0(q) = N(EF ) +
qαqβ

4
d
〈
N(EF )µαβ

〉
dEF

+
qαqβ

6
d2 〈N(EF )vαvβ〉

dE2
F

(12)

= N(EF ) +
q2

4
d 〈N(EF )µxx〉

dEF
+
q2

6
d2
〈
N(EF )v2

x

〉
dE2

F

, (13)

where v2
x = v2

y = v2
z , µxx = µyy = µzz. The last equal-

ity assumes cubic symmetry; generalization to a lower
symmetry is trivial. Using the following relation,∑

k

∇kF (εk) =
∑
k

dF (εk)
dεk

∇k · εk =
∑
k

dF (εk)
dεk

vk,

one can prove that

d2
〈
N(EF )v2

x

〉
dE2

F

= −d 〈N(EF )µxx〉
dEF

. (14)

Therefore

Reχ0(q) = N(EF )− q2

12
d2
〈
N(EF )v2

x

〉
dE2

F

(15)

Similarly, for Eq. 10 one has

Imχ0(q,ω) =
∑
k

[(
−df(ε)

dε

)
ωδ(vk·q− ω)

]
(16)

After averaging over the directions of q, this becomes,
for small ω,

Imχ0(q,ω) =
ω

2

∑
k

δ(εk)
vkq

θ(vkq − ω) =
ω

2q
〈
N(EF )v−1

〉
v =

√
v2
x + v2

y + v2
z . (17)

Although the Fermi velocity is obviously different along
different directions, it is still a reasonable approximation

3



to introduce an average vF . Then the frequency cutoff in
Eq. 17 is ωc ≈ qvF .

From Eq. 8 it follows that

Imχ(q,ω) =
bqωN(EF )2

a2q6 + b2ω2
, (18)

and, performing the integrations,

ξ2 =
bv2
FN(EF )2

8a2Ω
[Q4 ln(1 +Q−4) + ln(1 +Q4)]

=
3b
〈
N(EF )v2

x

〉
N(EF )

8a2Ω
[Q4 ln(1 +Q−4) + ln(1 +Q4)],

where Q = qc
√

a
bvF

with qc the cutoff in the momentum

space. While there is no solid prescription to estimate the
cutoff value, fortunately for Q ∼ 2 the dependence of ξ
on Q is not very strong. While the susceptibility χ(q, ω)
can, in principle, be calculated exactly, there is no rigor-
ous definition of qc. The conceptual difficulty here is, as
in all problems related to electron-electron interactions,
that some part of the effect in question is already in-
cluded in the LDA, and rigorous treatment of the double-
counting becomes virtually impossible (cf. discussion of
this issue in connection to the LDA+U method [37]). At
this point one needs to make the choice of qc. There are
two obvious, natural ansatz: First, one could choose qc,
which is of the order of the average diameter of the Fermi
surface, defined as π

4 q
2
c = SF , where SF , the area of the

Fermi surface projection, can be calculated (as [36]) SF =
Ω
n 〈N↑(EF )vx〉 = Ω

12n 〈N(EF )|v|〉, where n is the number
of bands crossing the Fermi level (n = 3 for Pd), which
for Pd is close to the average radius of the Brillouin zone
(G = 0.85 bohr−1 for Pd). Second, one could choose
the value of q at which the model susceptibility (Eq. 15)

becomes unphysical (negative) at qc =
√

N(EF )
a . In our

case the latter is smaller, so we had to choose it in order
to avoid unphysical values of χ.

The above formulas reduce all parameters needed for
estimating the r.m.s. amplitude of spin fluctuations
to four integrals over the Fermi surface: N(EF ), a =
1
12
d2〈N(EF )v2

x〉
dE2

F
b = 1

2

〈
N(EF )v−1

〉
, vF =

√
3 〈N(EF )v2

x〉
N(EF ) ,

and qc = 2
√

Ω
π 〈N(EF )vx〉. It should be noted that these

integrals are extremely sensitive to the k-point mesh. We
used various meshes between 40x40x40 and 60x60x60,
and averaged the results using the bootstrap method (to
eliminate the effect of special points coinciding with mesh
points). Velocities were calculated as matrix elements
of the momentum operator, using the optic program of
the WIEN package. We obtained (all energies are mea-
sured in Ry, lengths in Bohr, and velocities in Ry·Bohr)
N(EF ) = 35.2,

〈
N(EF )v2

x

〉
= 1.15, d2〈N(EF )v2

x〉
dE2

F
= 1700,〈

N(EF )v−1
〉

= 270, vF =
√

3 〈N(EF )v2
x〉

N(EF ) = 0.25, and
〈N(EF )|v|〉 = 12.5. Correspondingly, a ≈ 140, b ≈ 135,

and qc = 2
√

Ω
π 〈N(EF )vx〉 = 0.9, or qc =

√
N(EF )
a = 0.5,

for the two above-mentioned ansatz, respectively.
Thus

ξ =

√
3 · 135 · 1.15 · 35.2

8 · 1402 · 2.5
[Q4 ln(1 +Q−4) + ln(1 +Q4)]

= 0.2µB
√
Q4 ln(1 +Q−4) + ln(1 +Q4),

and using the smaller estimate for qc, we get Q =
qc
√

140
(135)(.25) = 2qc ≈ 1, ξ =0.24 µB . Note that the en-

ergy of a long-range spin fluctuation with such an ampli-
tude is of the order of a few meV per atom, as can be
seen from Fig. 1.

This result is quite sensitive to the second derivative
d2〈N(EF )v2

x〉
dE2

F
, which was the most difficult quantity to

calculate. An inspection of the energy dependence of〈
N(EF )v2

x

〉
(Fig. 6, inset) elucidates the reason: the

Fermi energy in Pd lies near an inflection point. As a

result,
d2〈N(EF )v2

x〉
dE2

F
is small (and hard to calculate reli-

ably). This, perhaps, is not accidental; were this deriva-
tive 2-3 times larger, the mean amplitude of spin fluctua-
tion would have been relatively small even given extreme
proximity of this material to the ferromagnetic instabil-
ity, because the relevant phase space would have been
too small. If this approximation is correct, this gives
an important hint for identifying quantum critical mate-
rials from the LDA calculations: the calculated ground
state should be close to ferromagnetic instability (on ei-
ther side) and the Fermi energy should be close to an
inflection point of the

〈
N(E)v2

x

〉
.

The calculated value of ξ, if substituted into Eq. 3,
gives χ ≈ 3.8 emu/g, overcorrecting the LDA value of 12
emu/g by nearly a factor of two (the experimental num-
ber is 6.8 emu/g). One can speculate about the origin
of this overcorrection. First of all, the formalism itself
is very crude; χ0(q, ω) was expanded to leading terms at
small q, but this expansion is used up to some large qc
comparable with kF . Furthermore, a key parameter in
the formalism is the cut-off momentum qc, for which we
use an ansatz based on the large-q behavior of the model
χ(q, ω). It is worth noting that in order to achieve full
agreement with the experiment, one only needs to re-
duce qc by 30%. Besides these theoretical problems, the
overcorrection may result from an insufficient accuracy

of calculating
d2〈N(EF )v2

x〉
dE2

F
, or from using LDA and not

GGA. Although the uncorrected LDA is closer to the ex-
periment than the uncorrected GGA, if corrected along
the lines above, the GGA would probably yield a renor-
malized χ(0, 0) in the right ballpark [38].

In conclusion, let us repeat our main points. The key
parameter defining the nontrivial physics near the QCP
is the mean-square amplitude of the spin fluctuations.
This parameter is a highly material dependent, nonlocal
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quantity, determined by the spin susceptibility in a large
part of the Brillouin zone, as well as by the characteristic
cut-off length separating “non-trivial” spin fluctuations
from spin-fluctuation implicitly included in the LDA. It
is hoped, however, that this parameter is mainly defined
by the long wavelength part of the susceptibility, while
the short wave-length characteristics, including the cut-
off length, may be only weakly material, pressure, etc.,
dependent. We derive a formalism that implements this
idea by relating, in the corresponding approximation, the
mean-square amplitude of the spin fluctuations near a
QCP with characteristics of the one-electron band struc-
ture. The formalism is based on the (1) Stoner theory for
spin susceptibility, (2) fluctuation-dissipation theorem,
and (3) lowest-order expansion of the real and imagi-
nary part of the polarization operator in terms of the
frequency and the wave vector. Together with the Lan-
dau expansion of the free energy, also computable within
the LDA formalism, this allows one to treat quantum
criticality semi-quantitatively on the basis of LDA calcu-
lations.
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FIG. 1. Calculated LSDA total energy, E, (in eV) with
respect to M = 0µB as a function of calculated magnetic mo-
ment, M (in µB).
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FIG. 2. Applied external magnetic field, H, (in Tesla) as
a function of the calculated LSDA magnetic moment, M (in
µB). The total moment is shown together with spin compo-
nent and the orbital component.
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FIG. 3. The external magnetic field, H, (in Tesla) as a func-
tion of the calculated magnetic moments, M (in µB). The fit
is to n ≤ 3 in Eqn. 2
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of M. The dashed line at 21 states/eV-cell corresponds to the
experimental value of χ for Pd [30,31].
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